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Neural-network classifiers were used to detect immunological differences in groups of chronic fatigue
syndrome (CFS) patients that heretofore had not shown significant differences from controls. In the past linear
methods were unable to detect differences between CFS groups and non-CFS control groups in the nonveteran
population. An examination of the cluster structure for 29 immunological factors revealed a complex, nonlinear
decision surface. Multilayer neural networks showed an over 16% improvement in an n-fold resampling
generalization test on unseen data. A sensitivity analysis of the network found differences between groups that
are consistent with the hypothesis that CFS symptoms are a consequence of immune system dysregulation.
Corresponding decreases in the CD191 B-cell compartment and the CD341 hematopoietic progenitor sub-
population were also detected by the neural network, consistent with the T-cell expansion. Of significant
interest was the fact that, of all the cytokines evaluated, the only one to be in the final model was interleukin-4
(IL-4). Seeing an increase in IL-4 suggests a shift to a type 2 cytokine pattern. Such a shift has been
hypothesized, but until now convincing evidence to support that hypothesis has been lacking.

Chronic fatigue syndrome (CFS) is a medically unexplained
illness characterized by over 6 months of fatigue producing a
substantial decrease in usual activity and occurring in associa-
tion with infectious, rheumatological, and neuropsychiatric
symptoms. Because CFS often begins acutely with a virus-like
presentation, one major idea for its cause is an immune sys-
tem-activated state, a hypothesis supported by reports of alter-
ations in some activated T-cell populations (9) and by increases
in certain subpopulations of “memory” T cells (14). However,
other groups have not been able to replicate these findings
(15), and we have recently completed a large study in which we
were unable to confirm any immune system abnormalities at all
in a group of CFS patients (18).

One reason for the apparent discrepancy may be statistical.
No study besides our own has controlled for multiple compar-
isons. Moreover, because activity can affect immunological
function, we compared our CFS data to data from sedentary
healthy people, an effort to match on activity, which had not
been done by others. Of interest was the fact that we found
immunological differences between Gulf War veterans with
CFS and healthy Gulf War veterans. The data suggest that
those differences emerged because the veteran population was
more immunologically homogeneous than the nonveteran pop-
ulation. Rather than make a type 1 error and reject the immu-
nological hypothesis for CFS in nonveterans based on our
analysis, which had employed classical statistical methods, we
decided to reevaluate the immunological data from our non-
veteran sample using a nonlinear-neural-net method to deter-
mine if immunological differences between patients and con-
trols did in fact exist.

Neural networks as nonlinear classification schemes are
good candidates for this type of medical classification problem
and have been shown to be productive in the past in other
types of medical classification cases. Previously it has been
shown (1, 10) that networks under fairly weak conditions can
provide optimal classification for unknown separation surfaces
and for unspecified distributions (6). Neural networks work by
creating separable partitions of the data at the feature level
and then, often, productively combine the results of the linear
surfaces into more complex decision surfaces at the next layer,
sometimes called the “hidden” layer. The hidden layer of a
neural network in fact is critical for its classification perfor-
mance under nonlinear conditions, and considerable theory
and experimental work prescribing the relationship between
classification performance and the complexity of the network
exists (3, 5). Nonetheless, out-of-sample validity testing is crit-
ical for selecting the model and assessing the level of complex-
ity in the data, which is ultimately responsible for the classifi-
cation performance achieved. In the present study, given the
potentially large number of immunologically relevant vari-
ables, modular networks, which allow for opportunisitic parti-
tioning of variables into smaller clusters rather than requiring
them to be processed at once in parallel as single hidden-layer
networks, were tested as possible classifiers. These model
classes were compared to perceptron (logit regression) and to
combinatorics/single-layer-neural-net classifiers. n out of k
bootstraps (2) were used to form a conservative test of the
classifier once acceptable results were obtained with a given
parametrization of the models. Sensitivity analysis of the clas-
sification surface conditioned on each variable was used to
estimate the contribution of each immunological factor.

Methods (subjects). The subjects were 103 women and 24
men (mean age 6 standard deviation [SD], 36.1 6 8.6 years;
118 Caucasians) who on history, physical examination, and
elimination of known medical causes of fatigue by laboratory
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testing fulfilled the 1994 case definion for CFS. The mode of
onset of illness and its severity were determined for 125 and
109 patients, respectively. Seventy-four patients reported a
sudden, flu-like onset occurring in 1 to 2 days, while 54 re-
ported a gradual onset taking days to weeks. Sixty-nine patients
fulfilled the 1988 case definition and, in addition, reported
symptom severities of $3 on 0-to-5 Likert scales, where 0 is
none, 3 is substantial, and 5 is very severe. Seventy-six women
and 11 men (mean age 6 SD, 35.9 6 8.5 years; 79 Caucasians)
who did not exercise regularly and who were not taking med-
ications besides birth control pills served as a healthy, matched
comparison group.

Following signing informed consent, subjects underwent ve-
nipuncture, and blood was collected in EDTA-anticoagulated
tubes and was coded to prevent knowledge of subject group.
Peripheral blood lymphocytes (PBLs) were labeled within 6 h
of collection with commercially available combinations of
monoclonal antibodies to the following cell surface markers:
CD45 and CD14, CD3 and CD8, CD3 and CD4, CD3 and
CD19, CD3 and CD16 and -56 (Simulset reagents; Becton
Dickinson [BDIS], San Jose, Calif.), CD8 and CD38, CD8 and
HLA-DR, CD8 and CD11b, CD8 and CD28, CD4 and
CD45RO, and CD4 and CD45RA (antibodies to CD11b were
from DAKO, Carpinteria, Calif.; all other antibodies were
from BDIS). The preparations were fixed in 0.5 ml of 1%
formalin (methanol free) and kept overnight at 4°C until flow-
cytometric analysis was performed. This analysis was done
using a FACscan cytometer (BDIS) equipped with a 15-mW
air-cooled 488-nm argon-ion laser (for details see reference 8).
Thus the following were quantified for each group of subjects
and used in the modeling: total white blood cell (WBC) count;
number (and percentage of total WBCs) of lymphocytes; num-
ber (and percentage of total lymphocyte count) of CD31

CD192 (total T cells), CD31 CD41 (major histocompatibility
complex class II [MHC II]-restricted T cells), and CD31 CD81

(MHC I-restricted T cells) cells and the arithmetic sum of the
latter two; CD32 CD191 (B cells) and CD32 CD161 and
CD561 (NK cells) cells; percentage of class II-restricted T cells
expressing CD45RO and CD45RA; and the percentage of
class I-restricted T cells expressing CD28, HLA-DR, and
CD38 but not CD11b.

PBLs harvested from additional aliquots of blood were ho-
mogenized in RNA-zol (Cinna/Biotecs, Friendswood, Tex.) at
50 mg per 0.2 ml (106 cells). The quantitative reverse transcrip-
tase PCR (RT-PCR) cytokine assay was used as previously

described (4, 8). RNA samples were reverse transcribed with
Superscript RT (Bethesda Research Laboratories, Rockville
Md.), and cytokine-specific primers were used to amplify the
following cytokines: alpha interferon, tumor necrosis factor
alpha, interleukin-2 (IL-2), IL-4, IL-6, IL-10, and IL-12. Am-
plified PCR product was detected by Southern blot analysis,
and the resultant signal was quantified with a phosphorimager
(Molecular Dynamics, Sunnyvale, Calif.) as described in detail
previously (4, 8).

Variable selection based on minimum variance and poten-
tially high immunological relevance resulted in 29 predictor
variables. These variables were examined for correlation and
means and SDs were produced. Strong off-diagonal correla-
tions and covariance implied that data reduction and subspace
projections would be profitable in the present case. An initial
cluster analysis (hierarchical, Euclidean, agglomerative cluster-
ing) was performed on all subjects over the candidate predic-
tors, and the resultant dendrogram can be seen in Fig. 1.
Clearly the underlying separation surface is complex. Although
small separable clusters of CFS or control groups appear in the
dendrogram (Fig. 1), the overall clustering diagram indicates
that the problem is highly nonlinearly separable. This encour-
aged us to explore more-complex nonlinear classification
schemes such as neural networks. We first looked at the linear
(Fisher’s discriminant analysis) case to see what to expect in
the form of a lower bound of classification performance.

In the neural-network literature a perceptron neural-net-
work model is similar to Fisher’s discriminants in that local
hyperplanes are fit to the decision surface of the classes in
order to minimize the classification error per case. These types
of models cannot account for nonlinearity of class membership
either in terms of relationship between variables or in terms of
nonconvexity of the concept class.

Using the immunological features and 128 CFS and 87 con-
trol subjects as described earlier, a linear perceptron was used
to create a discrimination function on n/2 bootstraps resa-
mpled with replacement 100 times. This effectively created
over 11,000 independent cases for classification. Of these,
5,381 cases were correctly classified as CFS and 1,675 cases
were correctly identified as control, while 1,578 CFS cases were
incorrectly classified as control (misses) and 3,029 control cases
were incorrectly classified as CFS (false alarms). The percent
correct for CFS was 77%, showing significant classification
performance, while marginal-to-poor classification perfor-
mance for control subjects near the decision surface (36%) was

FIG. 1. Clustering dendrogram of CFS (X) and control (O) cases on 29 immunologically defined features.
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observed. The overall percentage of correct classification was
near 60%. These values provide a benchmark set for other
more-complex classification methods. Below we consider the
case of multilayer networks and modular networks.

Multilayer neural networks are standard nonlinear classifiers
using a logit output. These networks are the logical increment
in classification power above the linear discriminant or per-
ceptron type classifier. Consequently, such models are referred
to many times as multilayer perceptrons. Network training is
accomplished by the back-propagation method and appears to
converge in a few hundred training epochs (where an epoch
was using every subject to reestimate each parameter in the
model). These models can recognize extremely complex pat-
terns in the feature space and can be used to construct decision
surfaces that can have high generalization potential. Presently,
it is unknown how to predict whether a given neural-network
classifier will have significant generalization performance on
unseen or out-of-sample cases, even if it is performing with
perfect accuracy for the training or sample cases. Partly this
could be due to “overfitting,” meaning that the network is
unable to extract general patterns and is in effect “storing”
random patterns that provide little similarity to the population
from which the cases have been drawn.

Typical learning curves. A learning curve for a multilayer
network with approximately 500 weights is shown in Fig. 2.
Convergence of the classification error usually occurred within
400 to 600 epochs over all patients. As is typical for most such
error curves there is an early resolution of some locally best
gradient direction and then a fairly rapid decline toward min-
imum error values on both classification units (CFS and con-
trol, coded as ,1 0. and ,0 1., respectively). Two classifi-
cation units were used to determine the rate of false alarms
and misses in the final learned classification function.

Model selection: sizes of hidden-layer and modular net-
works. The size of the hidden layer was determined by system-
atic cross-validation of the network trained on one sample and
tested on a held-out sample. Hidden-layer sizes from 2 to 120
were tested using 100 replications per hidden-unit size. Be-
tween 12 and 18 hidden units, the network error reached a
minimum and seemed to decrease very slowly to a marginally
different value near 80 to 100 hidden units. All network sim-
ulations were thereafter fixed at 12.

Alternative network architectures were also explored using
“modular-style” networks. These types of networks isolate pro-
cessing from either input clusters or output clusters or both.
Various possibilities were tested using 12 hidden units at var-
ious layers (at most two layers of hidden units were tested) and
cases where 12 was the total number of hidden units, which

were distributed in patterns of ,4 4. ,2 2. for the first and
second hidden layers, respectively. Split half tests provided no
better, and in larger modular networks considerably worse,
generalization performance. Consequently, for the final tests
and analysis all networks were fixed at 12 hidden units in a
multilayer perceptron.

In-sample testing. In a typical result for an in-sample test for
a single network, all 107 cases (63 CFS and 44 control) ran-
domly sampled from the total cases were correctly classified.
Shown in Table 1 is a summary of the mean square error
(MSE), a normalized MSE, mean average error, minimum
absolute error within the sample, maximum absolute error, and
correlation coefficient of output value with classification code.
This was fairly typical of all 100 resampled tests; each inde-
pendent network correctly classified all of the in-sample cases,
nothwithstanding nonzero MSE.

Out-of-sample testing. Similar to the out-of-sample tests
with the linear discriminant classifier out-of-sample tests with
the multilayer perceptron were performed on over 11,000 in-
dependent samples. The CFS cases were correctly classified at
a rate similar to that for the linear discriminant (4,550 of 6,037
[75%] correctly classified); however, the control cases were
correctly classified at a 16% higher rate, with 51% (2,084 of
4,128) correct. With larger training sets, the out-of-sample
generalization increased very rapidly to 80 to 90% with, con-
sequently, fewer out-of-sample test cases (,20) and therefore
less reliability for the classification estimate.

With the given neural-network classifier, we can determine
the specific contribution of each variable to the classification
performance. This is accomplished by perturbing each input
line and observing its effect on the classification performance.
Shown in Fig. 3 is the result of this procedure for all 29
variables. While all other variables were held constant, each
variable was perturbed by 2 SDs and the classification output
units were recorded. Each bar in the histogram shows a nor-
malized response on each classification variable (CFS and con-
trol). The height of the bar indicates the effect on the remain-
ing classification error; the maximum sensitivity indicates a
102% increase in classification error, while the minimum
change was a 1% increase in classification error. The maximum
change in classification error would completely disrupt the
classification function, while a 1 to 2% change reduces the
classification error toward the linear perceptron performance.
With this threshold there were 10 to 14 variables identified as
making significant contributions to classification. Shown in Ta-
ble 2 are the 14 variables found by the sensitivity analysis to be
the most significant.

When we used classical statistical methods to search for
immunological differences between nonveterans with CFS and
healthy, sedentary controls, we found no major differences

FIG. 2. Overall MSE over epochs.

TABLE 1. Summary of variables for in-sample test
for a single networka

Classifi-
cation MSE NMSE Mean avg

error
Absolute

error r %
Correct

CFS 0.0076 0.0314 0.0390 0.0000–0.4810 0.9865 100.0000
Control 0.0076 0.0314 0.0390 0.0000–0.4847 0.9864 100.0000

a NMSE, normalized MSE; r, correlation coefficient of output value with
classification code.
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(18). Obviously one limitation of our earlier work was that we
may not have studied all the correct domains of immune sys-
tem variables (e.g., we never studied soluble-cytokine recep-
tors). Despite this possible deficiency, however, using these
neural-network models, we did find that important immuno-
logical differences emerged. Of interest was the fact that, of all
the cytokines evaluated, the only one to be in the final model
was IL-4. Seeing an increase in IL-4 suggests a shift to a type
2 cytokine pattern. Such a shift has been hypothesized (17), but
convincing evidence to support that hypothesis has been lack-
ing. The neural networks in these studies are able to detect and
represent nonlinear decision surfaces and can therefore in
principle be sensitive to factors and the interaction of factors
that linear methods would overlook. Moreover the resampling
techniques in these studies provide high reliability for the
more-complex kinds of classifiers that neural networks can
detect and approximate.

The cell surface marker data provide evidence that T cells
are selectively activated in CFS patients, resulting in their
expansion relative to other mononuclear cell populations. A
proportional increase in memory/effector CD45RO cells rela-
tive to naive CD45RA cells and an increase in CD28 T cells
both accompany an overall increase in CD3 T cells. The pos-
itive interaction with IL-4 suggests the possibility that this Th2
cytokine is associated with this expansion. These findings are
consistent with the hypothesis that CFS symptoms are a con-
sequence of immune system dysregulation. A corresponding
decrease in the CD191 B-cell compartment and the CD341

hematopoietic progenitor subpopulation is also detected, con-
sistent with the T-cell expansion.

If the symptoms of CFS were caused by immune system
activation, one would expect to find an increase in CD45RO

memory cells. Although this result has not been found prior to
this report (11, 14), Straus et al. did find a suggestion of
immune system activation in the form of an increased number
of activated CD45RO subpopulations. In contrast to the ex-
pected result, two groups have found decreases in CD45RA,
the naive cell (11, 14), a result quite different from the one
reported here and one which we did not find. Inconsistent
immunological results across laboratories have been the rule
(for examples, see references 7, 11, and 18). An association of
this disease with IL-4 may provide insights into the basis of
chronic fatigue since IL-4 can promote allergy-associated in-
flammatory responses resulting from activation of mast cells
and other effector cell types triggered during the Th2 response.

FIG. 3. Sensitivity analysis for network classifier, showing relative contributions of each immunological factor. TNF. A, tumor necrosis factor
alpha; IFN. G, gamma interferon; lymph. lymphocytes; P, percent; N, number.

TABLE 2. Immunological sensitivities for the
14 most significant factors

Factor(s)
% Change of
classification

error

CD38............................................................................................. 21.0
HLA-DR ...................................................................................... 214.2
CD11b........................................................................................... 13.9
CD45RO ...................................................................................... 113.8
CD45RA....................................................................................... 215.8
CD28............................................................................................. 114.2
CD3, CD8 .................................................................................... 115.3
CD3, CD4 .................................................................................... 148.8
CD3...............................................................................................1102.9
CD19............................................................................................. 228.0
CD16, CD56 ................................................................................ 144.3
CD34, CD38 ................................................................................ 242.8
Lymphocytes ................................................................................ 21.5
IL-4 ............................................................................................... 11.0
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These immunological changes could explain some of the clin-
ical picture seen in CFS. We believe that controlling for illness-
related inactivity and using newer statistical techniques such as
the one used here should provide the field a methodological
template for future studies designed to replicate and extend
earlier results.

This work was supported by NIH grant AI-32247.
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